

INSIDE: NEW APPROACHES TO UNDERSTANDING THE MECHANICS OF BURGESS SHALE-TYPE DEPOSITS PLUS: PRESIDENT'S OBSERVATIONS COMMENTS FROM THE COUNCIL CALGARY ACTIVITIES

SEPM Special Publication #82: The Deposition of Organic-Carbon-Rich Sediments: Models, Mechanisms, and Consequences

Edited By: Nicholas B. Harris

Depositional models for organic-carbon-rich sediments have been the subject of both great interest and great controversy for many years. These sediments serve as the ultimate source of virtually all oil and gas. They also represent the interface between biological and geological processes and provide critical evidence for the state of the atmosphere and oceans. Yet despite their importance and decades of research, the origin of these sediments remains the source of vigorous disagreement. The twelve papers in this volume represent the cutting edge of research in this topic. They explore the origin of organic-carbon-rich sediments through a variety of techniques, including sedimentology, geochemistry, paleontology and computer modeling. All papers take multidisciplinary approaches to the topic, and together, they demonstrate the complex interconnected processes that trigger the deposition of organic carbon. This book will appeal to geoscientists in many disciplines, including explorers for petroleum who need models for source rock deposition, organic and inorganic geochemists who study processes in water and sediment, sedimentologists who interpret ancient depositional environments, and climatologists and oceanographers who reconstruct the behavior of the ancient atmosphere and oceans.

CSP #8 Coming Soon!

Catalog Number: 40082; 282 pages; ISBN: 1-56576-110-3 List Price: \$138.00 SEPM Member Price: \$99.00

SEPM Concepts in Sedimentology & Paleontology #8: Carbonate Sedimentology and Sequence Stratigraphy

By: Wolfgang Schlager

Sedimentology and stratigraphy are neighbors yet distinctly separate entities within the earth sciences. Sedimentology searches for the common traits of sedimentary rocks regardless of age as it reconstructs environments and processes of deposition and erosion from the sediment record. Stratigraphy, by contrast, concentrates on changes with time, on measuring time and correlating coeval events. Sequence stratigraphy straddles the boundary between the two fields. This book, dedicated to carbonate rocks, approaches sequence stratigraphy from its sedimentologic background. Carbonate sedimentation, in contrast to siliciclastic, is largely governed by chemistry and biota of the ocean and thus intimately tied to the ocean environment. Therefore, the presentation starts with essentials of physical and chemical oceanography and biology. It then proceeds to principles of marine carbonate production (and erosion) and the geometry of carbonate accumulations, using the concept of carbonate production systems, or factories, to illustrate the variations among the carbonate rocks. Next it turns to carbonate facies and the sedimentologic part closes with an overview of the rhythms and events governing carbonate depostion in time and space. Sequence stratigraphy starts with Chapter 6 with an overview then develops carbonate sequence stratigraphy on the basis of processes and principles presented in the sedimentologic part. This book attempts to communicate by combining different specialities and different lines of reasoning, and by searching for principles underlying the bewildering diversity of carbonate rocks. It provides enough general background, in introductory chapters and appendices, to be easily digestible for sedimentologists and stratigraphers as well as earth scientists at large.

SEPM Concepts in Sedimentology and Paleontology #8

CARBONATE SEDIMENTOLOGY AND SEQUENCE STRATIGRAPHY

By: Wolfgang Schlager

to order online, visit: WWW.Sepm.org

On the Cover: Bedding plane assemblage of sponges belonging to the Genus Choia from the middle Cambrian Wheeler Formation of Utah, a Burgess Shale-type deposit. The host mudrocks may reveal a wealth of data about the paleoenvironements of such deposits, the ecology of the organisms, and the conditions which facilitated the exquisite preservation. (Scale: The central disc of each sponge is 9-16 mm in diameter.) Photo by R. Gaines.

<u>CONTENTS</u>

- 4 New Approaches to Understanding the Mechanics of Burgess Shale-type Deposits: From the Micron Scale to the Global Picture
- 9 President's Observations A Year in Review: A Society Moving Forward
- **10** Comments from the Council First Joint SEPM/GSL Research Conference in Seismic Geomorphology is a Huge Success

The Sedimentary Record (ISSN 1543-8740) is published quarterly by the Society for Sedimentary Geology with offices at 6128 East 38th Street, Suite 308, Tulsa, OK 74135-5814, USA.

Copyright 2005, Society for Sedimentary Geology. All rights reserved. Opinions presented in this publication do not reflect official positions of the Society.

The Sedimentary Record is provided as part of membership dues to the Society for Sedimentary Geology.

SEPM Members, please note that Judy Tarpley and Kris Farnsworth have both left SEPM for other opportunities. We thank them for their dedicated service and for making their departure a smooth transition. SEPM also looks forward to having Bob Clarke join the staff as the new Publications Co-ordinator.

Editors

Loren E. Babcock, Department of Geological Sciences, The Ohio State University, Columbus, Ohio 43210 <babcock.5@osu.edu>

Stephen A. Leslie, Department of Earth Science, University of Arkansas at Little Rock, Little Rock, Arkansas 72204 <saleslie@ualr.edu>

Marilyn D. Wegweiser, Bucking Dinosaur Consulting; P.O. Box 243; Powell, WY, 82435; <thedoc@180com.net> <wegwmari@isu.edu>

SEPM Staff

6128 East 38th Street, Suite #308,Tulsa, OK 74135-5814 Phone (North America): 800-865-9765 Phone (International): 918-610-3361

Dr. Howard Harper, Executive Director <hharper@sepm.org> Theresa Scott, Business Manager <tscott@sepm.org> Bob Clarke, Publications Coordinator <rclarke@sepm.org> Michele Woods, Membership Services Associate <mwoods@sepm.org>

SEPM Council

J. Frederick Sarg, President <ricksarg1@aol.com> William A. Morgan, President-Elect <w.a.morgan@conocophillips.com> Lesli J. Wood, Secretary-Treasurer <lesli.wood@beg.utexas.edu> Serge P. Berne, International Councilor <sberne@ifremer.fr> Stephen A. Leslie, Councilor for Paleontology <saleslie@ualr.edu> Maria Mutti, Councilor for Sedimentology <mmutti@geo.uni-potsdam.de> Vitor Abreu, Councilor for Research Activities <vitor.abreu@exxonmobil.com> Kitty Lou Milliken, Co-editor, JSR <kittym@mail.utexas.edu> Colin P. North, Co-editor, JSR <c.p.north@abdn.ac.uk> Christopher G. Maples, Editor, PALAIOS <chris.maples@dri.edu> Laura J. Crossey, Editor, Special Publications <lcrossey@unm.edu> Tim Carr, President, SEPM Foundation <tcarr@kgs.ku.edu>

www.sepm.org

New Approaches to Understanding the Mechanics of Burgess Shale-type Deposits: From the Micron Scale to the Global Picture

Robert R. Gaines, Department of Geology, Pomona College, Claremont, CA 91711; robert.gaines@pomona.edu

Mary L. Droser, Department of Earth Sciences-036, University of California, Riverside, CA 92521

ABSTRACT

Cambrian Burgess Shale-type (BST) deposits are among the most significant deposits for understanding the "Cambrian explosion" because they contain the fossilized tissues of nonmineralized organisms and provide a substantially different window on the radiation of the Metazoa than is afforded by the more "typical" fossil record of skeletal parts of biomineralized organisms. Despite nearly a century of research, BST deposits remain poorly investigated as sedimentologic entities largely because they comprise fine-grained mudrocks. Here, we describe a new, integrative approach to understanding a single BST deposit, the middle Cambrian Wheeler Formation of Utah, which reveals a dynamic interplay of paleoenvironmental, paleoecologic, and sedimentologic/diagentic factors within a superficially homogeneous lithofacies. This millimeter-scale microstratigraphic and paleontologic approach is augmented by both outcrop and microscopic study. These types of data are applicable to issues of quite different scales, including micron-scale diagenetic processes involved in fossil preservation, organism-environment interactions and paleoecology of the early Metazoa, and regional and global controls on the distribution of BST deposits.

BURGESS SHALE-TYPE DEPOSITS:THE GLOBAL PICTURE

Cambrian lagerstätten (Conway Morris, 1989) provide a fortuitous window into one of the most dramatic episodes in evolutionary history. Represented most famously by the Burgess Shale (middle Cambrian of British Columbia), these deposits are noteworthy for two major reasons. First, they provide an excellent record of ancient biodiversity because they contain fossils that are not preserved under normal circumstances. Whereas the "normal" fossil record is almost exclusively a record of hard, mineralized skeletal parts, these deposits preserve some labile, nonmineralized tissues of organisms, including those lacking hard skeletal parts. Secondly, these deposits, which are rare in the geologic record as a whole, are moderately abundant in lower and middle Cambrian strata, an interval spanning the

time of the "Cambrian explosion." In the rock record, this interval is marked by the relatively sudden appearance of fossils representing most animal phyla, the acquisition of skeletal hard parts by a number of animal groups, and the advent of predation and complex metazoan in ecosystems (e.g., Seilacher, 1997; Zhuravlev and Riding, 2001; Babcock, 2003). In this paper, we present a unified framework for understanding the dynamic interplay of sedimentological, paleoecological, and paleoenvironmental factors that controlled the preservation and distribution of fossils in a single Burgess Shale-type deposit, the Wheeler Formation (middle Cambrian) of western Utah.

NEW APPROACHES

Many BST deposits, including the Wheeler Formation and the Burgess Shale, represent deposition just offshore of broad carbonate platforms, at sharp shelf-slope breaks (Conway Morris, 1998; Rees, 1986). Classic models for the Burgess Shale have considered the depositional environment to be fully anoxic, due to the exquisite preservation of fossils, and the dark color of the mudrocks (e.g., Conway Morris, 1986). This implies that the faunas were transported, yet some assemblages of fossils, such as the well-known Ogygopsis trilobite beds in the Burgess Shale and horizons that contain delicate sponges, clearly occur in situ. Important questions, key to a first-order understanding the biotas in an ecological sense, have remained: Can discrete, paleoecologically meaningful assemblages be resolved from within the homogeneous sediments? Were bottom water oxygen conditions sufficient to permit episodic, frequent, or sustained benthic colonization by in situ faunas? Because of the extraordinary importance of these biotas, a better knowledge of the relationships of the organisms to the paleoenvironments that they inhabited and/or facilitated their preservation is desirable.

In order to begin to address these interrelated problems, we focused on the middle Cambrian Wheeler Formation of western Utah, which contains abundant Burgess Shaletype preservation of nonmineralized fossils, including common macroscopic algae and a diverse fauna of more than 20 genera of more rarely occurring arthropods, priapulids, sponges, and cnidarians (Robison, 1991). It also contains a well-described and diverse skeletal fauna (Robison, 1964, 1991). The formation is well exposed and readily accessible over a broad area in the House Range (39°15' N, 113°20' W) and immediate vicinity. The study area is arid and also has not been subjected to extensive compressive stress. As a result, mudrocks of the Wheeler Formation are less strongly altered by the effects of tectonics and weathering than are other important BST deposits.

Mudrocks present unique challenges to study. Unlike other types of sedimentary rocks that are more readily interpreted in the field, mudrocks most often appear featureless and massive. Thus, in a stratigraphic context, mudrocks are commonly interpreted to represent static, monotonous conditions, or are occasionally subdivided on the superficial basis of color. Mudrocks comprise the bulk (60%) of the sedimentary record, yet remain poorly understood (Potter et al., 1980). However, recent methodological advances in the study of mudrocks have demonstrated that intensive, fine-scale approaches can yield much information about depositional processes and paleoenvironments (e.g., Schieber 2003). The

suite of depositional environments represented by mudrocks is typically characterized by lowenergy deposition, relatively continuous sedimentation, and, often, little current reworking in comparison to coarser-grained deposits. Furthermore, mudrocks often contain in situ fossil assemblages, making them particularly good candidates for paleoecological and paleoenvironmental study.

An integrative, millimeter-scale, methodology, incorporating aspects of sedimentology and paleontology was applied. In the field, short (1-5 m) intervals were targeted for intensive study and sampled continuously in duplicate. In the laboratory, these short sections were reconstructed and slabbed parallel to bedding, then etched lightly with dilute HCl to reveal primary and secondary sedimentary features. Using direct analysis of the slabbed samples in combination with thin section study, the sections were logged on a millimeter scale. The duplicate sets of samples were split along bedding planes for paleontological analysis, and the microstratigraphic positions of fossils were incorporated into the logs. These techniques were complemented by compositional (XRD, EDX, coulometry), geochemical (δ^{13} C; δ^{18} O), microscopic (SEM, fluorescent light, cathodoluminescent), and imaging (X-ray) analyses.

PALEOENVIRONMENTS AND BOTTOM-WATER OXYGEN

The Wheeler Formation accumulated in what has been interpreted as a fault-bounded trough, termed the House Range embayment, at the edge of an expansive carbonate platform (Rees, 1986). At most localities, the Wheeler Formation is composed of homogenous, finegrained mudrocks, with smaller thicknesses of thin-bedded, fine-grained carbonates. Burgess Shale-type biotas occur only in the mudrock facies. Wheeler mudrocks, which represent the lowest energy deposits found in the region, represent deposition in a basin adjacent to the distal end of a carbonate ramp (Rees, 1986). The thin-bedded carbonates and interbedded mudrocks comprising the distal ramp facies of the House Range embayment consist of submillimeter-thick micro-graded beds, interpreted to represent down-ramp gravity flows deposited below the influence of storm waves (Elrick and Hinnov, 1996). The basinal mudrock facies typically grades upwards into distal ramp deposits. Basinal mudrock sediments of the Wheeler Formation are characterized by: 1, exclusively fine grain size $(<50\mu)$; 2, mixed carbonate-clay composition (17-47 wt. % carbonate); 3, color-graded gray-black

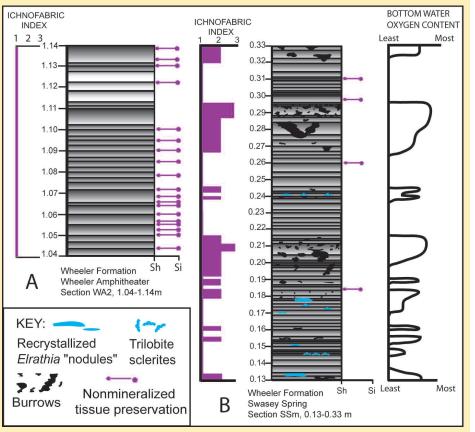


Figure 1. Microstratigraphic logs from the Wheeler Formation illustrating the context of nonmineralized preservation. A. 10-cm interval with complete absence of bioturbation and Burgess Shale-type preservation in most beds, typical of sustained anoxic benthic conditions in the Wheeler Formation. B. 20-cm interval showing cm-scale oscillations in bioturbation, bottom water oxygen, and, accordingly, fossil content. Most nonmineralized metazoan fossils occur where favorable preservational environments are closely interbedded with other types of beds.

"couplets" ranging from 1 to 12 mm in thickness, with no apparent size or compositional grading; and 4, uninterrupted vertical persistence for tens of meters of section, indicating sustained low-energy deposition below the influence of storm waves. The "couplets" of the Wheeler Formation are interpreted as the distal expression of gravity-dominated depositional events spilling off of the adjacent ramphowever, they also may contain a hemipelagic component. Some evidence for bottom-flowing currents is present, including transported (see below) and current aligned fossils (Rees, 1986), and rare tool marks.

The availability or lack of dissolved oxygen in bottom waters during deposition is a critical issue. In order to assess paleo-redox conditions, an ichnological model was applied (Savrda and Bottjer, 1986), which correlates increasing depth and extent of bioturbation to increasing availability of dissolved oxygen of bottom waters. In modern environments, anoxic conditions are characterized by a complete absence of bioturbation (ichnofabric index (i.i.)1), whereas well-oxygenated environments are characterized by well-developed ichnofabrics (i.i.4-5), and destruction of most primary sedimentary structures (Savrda et al. 1984). Extrapolating ichnological models to Cambrian sediments requires caution, because the infaunal habitat was incompletely developed at this time (Droser and Bottjer, 1988). Thus, this model was used as a relative tool, to compare oxygen levels among beds within the Wheeler Formation. This model was applied on a bed-to-bed basis in order to develop relative oxygen curves at a millimeter scale for each of the continuously sampled intervals. The Wheeler Formation is inferred to have had a complex redox history during deposition, characterized largely by oxygen-deficient bottom water conditions that, at times, were sufficient to permit benthic colonization by epifaunal and infaunal organisms. Many sampled intervals show sustained bottom water anoxia, whereas others show dynamic shifts from inferred anoxic to dysoxic conditions at a centimeter to decimeter scale (Figure 1).

PALEOECOLOGY

In the >3000 individual beds analyzed, Burgess Shale-type preservation occurs exclusively in the absence of bioturbation (i.i.1). Thus, it is inferred that in the Wheeler

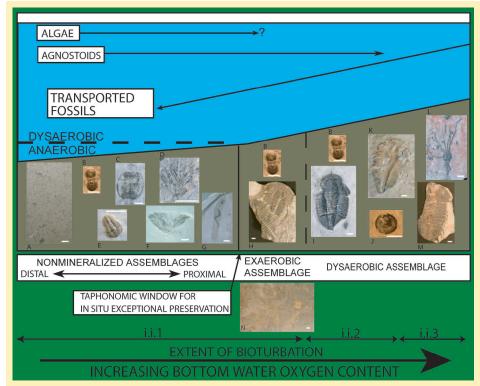


Figure 2. Paleoecological reconstruction of the Wheeler Formation showing bottom water oxygen control over the distributions of fossils found in the basinal mudrock facies. Distal nonmineralized assemblages are characterized by A, bedding planes covered in algae (fragmentary or small), some belonging to the genera Marpolia and Morania. B. Peronopsis, and other agnostoid trilobites occur in all assemblages, indicative of a pelagic mode of life, unrelated to benthic conditions. Proximal nonmineralized assemblages are characterized by larger and more complete fossils: C. Articulated carapace of a phyllocarid arthropod. D. Yuknessia simplex, a nonmineralized alga. E. Brachyaspidion microps, a pelagic trilobite. F. Marpolia spissa, a nonmineralized alga. G. Undetermined metazoan showing gut tract. Exaerobic assemblages contain Elrathia kingii (H), in addition to occasional pelagic fossils. Dysaerobic assemblages contain a more diverse skeletonized fauna, including: I. Asaphiscus wheeleri. J. Acrothele?, K. Alokistocare. L. Gogia spiralis (eocrinoid). M. Olenoides. Rarely, nonmineralized preservation occurs in situ when sharp shifts in bottom water oxygen content occur: N. Association of Choia. All scale bars are 5 mm.

Formation, this style of preservation occurs only under anoxic bottom waters, uninhabitable by benthic metazoans. Whereas this finding offers little hope for the possibility of resolving distinct ecological assemblages within the nonmineralized faunas, microstratigraphic patterns provide some insight. Nonmineralized fossils occur along a gradient ranging from abundant fragmented and diminutive forms to larger and more complete forms, which occur in lower densities. Microstratigraphic proximity of any given horizon bearing nonmineralized preservation to bioturbated (oxic) horizons is a reliable indicator of what type of nonmineralized assemblages will be present. Intervals representing accumulation under sustained bottom water anoxia contain nonmineralized preservation of small and/or disarticulated forms, dominated by algae with rare metazoans, in each individual bed, often through hundreds of sequential beds (Figure 1A). Intervals bearing nonmineralized preservation that are interbedded closely (<10 cm) with bioturbated

horizons reflect oscillating bottom water oxygen content, and contain larger and more complete nonmineralized fossils, including a significant proportion of metazoans (Figure 1B). Thus, the observed gradient in size and articulation of nonmineralized fossils is inferred to be related to distance of transport. Intervals characterized by sustained anoxia represent accumulation sites distal to the anoxic-oxic boundary, and thus, to habitable benthic environments from which the nonmineralized fossils were sourced. Intervals occurring in close microstratigraphic proximity to habitable benthic environments are inferred to represent accumulation sites proximal to oxic benthic environments, and thus contain larger and more complete forms (see Figure 2). This proximal-distal gradient in Burgess Shale-type preservation ranges from distal environments to the edge of oxic benthic environments, where, most rarely, in situ preservation of nonmineralized forms does occur, when abrupt shifts to bottom water anoxia coincide with burial of benthic forms.

Such occurrences provide the best hope of understanding elements of the Burgess Shale biota in an ecological context, and may be sought for further study by targeting such environments for search.

Although BST deposits are best known for the nonmineralized fossils they preserve, most also contain diverse faunas of skeletonized forms. In the Wheeler Formation, skeletonized faunas are dominated by trilobites, and also include acrotretid brachiopods and echinoderms. The best-known fossil from the Wheeler Formation is the trilobite *Elrathia* kingii, which is found in collections around the world. Despite a narrow geographic range, E. kingii is sufficiently abundant to be distributed commercially because it occurs in dense associations of up to 500 complete individuals per m², and it is typically coated with cone-incone calcite on the ventral side, allowing easy extraction from the rock. Microstratigraphic analyses revealed that E. kingii occurs in monospecific associations, although E. kingii commonly occurs in hand samples with other faunas that occur on other bedding planes (Gaines and Droser, 2003). Microstratigraphic data also reveal that most (93.6%) E. kingii occurrences are in unbioturbated beds that are in close vertical proximity (mm-cm) to beds bearing nonmineralized preservation, and also closely adjoin beds that contain weak to moderate levels of bioturbation. Because it occurs prominently at the transitions from beds deposited under anoxic conditions to those deposited under oxic conditions, it is inferred that E. kingii occupied a niche habitat at the edge of oxygenated bottom waters, below the oxygen levels required to support an infauna (Gaines and Droser, 2003). This manner of occurrence is consistent with an "exaerobic zone" lifestyle (Savrda and Bottjer, 1987), indicating that E. kingii may have used sulfur bacteria as a primary food source. Chemoautotrophic sulfur bacteria occur in abundance at this boundary today, where free sulfides in anoxic bottom waters mix with minimally oxygenated bottom waters (Figure 3). The ready availability of sulfur bacteria as a food source provides the most plausible explanation for adaptation to a marginal, oxygenstressed habitat. Sulfur bacteria have been proposed as a primary food source for other trilobites (Fortey, 2000), and the morphology of E. kingii is consistent with these interpretations, as E. kingii possesses a number of attributes considered advantageous for life in oxygen-depleted environments. This finding indicates that non-phototrophic-based ecosystems were in place early in the history of animal life. E. kingii also serves as an excellent paleoenvironmental indicator in the Wheeler Formation, marking the transition between oxic and anoxic benthic conditions, otherwise irresolvable in the field. The possibility that the exaerobic niche may have been occupied in other Cambrian environments holds great paleoecological significance.

Both nonmineralized fossil assemblages and E. kingii associations are characteristic of specific, yet different, bottom water oxygen conditions, and both occur in unbioturbated (i.i.1) beds. A third assemblage type, microstratigraphically distinct from horizons bearing nonmineralized preservation as well as from those bearing E. kingii, is characterized by the presence of weak to moderate levels of bioturbation (i.i. 2-3), interpreted to signify dysoxic conditions (Figure 2). This assemblage is dominated by large (>3 cm) trilobites, most prominently Asaphiscus wheeleri, and also includes acrotretid brachiopods and the eocrinoid Gogia. Orientation and evidence from molt assemblages indicates that these faunas occur in situ, however in lower densities than either the E. kingii or nonmineralized fossil associations. Further bed-to-bed-scale work holds the promise of resolving discrete paleoecological associations within this assemblage. A significant fauna of pelagic trilobites is also found in the Wheeler Formation, including a diverse assemblage of agnostoids (Robison, 1964). The diminutive non-agnostoid trilobites Jenkinsonia varga and Brachyaspidion microps are also interpreted as pelagic on the basis of biofacies-crossing distributions and their common presence in beds representing deposition under uninhabitable (anoxic) benthic conditions.

We infer that benthic redox conditions acted as a first-order control over fossil content in the Wheeler Formation, regulating the primary distributions of organisms as well as their preservation (Figure 2). Importantly, while all three types of assemblages (nonmineralized, *E. kingii*, dysaerobic) may occur within a single, narrow microstratigraphic interval (millimeters-centimeters) at the scale of a hand-sample, they represent discrete associations that occurred under demonstrably different benthic conditions.

PRESERVATION

Specific mechanisms of nonmineralized fossil preservation are a subject of some debate. Whereas mineral-replacement of some nonbiomineralized tissues occurs in some deposits (e.g., Emu Bay Shale of Australia; Briggs and Nedin, 1997; and Chengjiang deposit of China; Zhu et al., 2005), the most common type of preservation of nonmineralized tissues in BST deposits may be "Burgess Shale-type preservation" (Butterfield, 1995, 2003) of fossils as two-dimensional carbon films, although associated mineral films also may be present (Orr et al., 1998). Curiously, this type of preservation is insignificant as a means of preserving benthic faunas after the middle Cambrian. While some types of mineral replacement of non-biomineralized tissues have been explained using actualistic models (e.g., Briggs and Kear, 1994), the causes of "Burgess Shale-type" preservation have typically been addressed using theoretical models.

Butterfield (1995) proposed that highly reactive clay minerals may have been commonplace on continental margins during some intervals of time and facilitated Burgess Shaletype preservation through adsorption of decay-inducing enzymes. This hypothesis was not supported by a metamorphic study of the Burgess Shale (Powell, 2003), which concluded that the original mineralogic composition of that unit was not unusual, and did not include any highly-reactive mineral species. Petrovich (2001) suggested that, under suboxic conditions, iron ions (abundant in clayrich marine sediments) are strongly adsorbed onto chitin and other organic biopolymers, and may have prevented decay of these select tissues by coating them and thereby physically blocking the enzymatic action of microbial decomposers. However, this model predicts that such preservation should be common in clay-rich, oxygen-deficient strata throughout the Phanerozoic. Both models, which invoke molecular-scale chemical interactions, do not provide comprehensive explanations of this phenomenon, and are problematic for the reasons described above.

Data obtained though intensive study of the Wheeler Formation were also applied towards the development of a new hypothesis for

The **Sedimentary** Record

Burgess Shale-type preservation (Gaines et al., 2005). This model unites micron-scale diagenetic processes involved in preservation with primary physical features of the depositional environment, allowing predictions to be readily applied to testing in other deposits. Burgess Shale-type preservation in the Wheeler Formation uniformly occurs in exclusively fine-grained sediments, lacking silt, fecal pellets, skeletal microfossils, and coarser particles. The close proximity of the depositional environment to a carbonate platform resulted in mixed carbonate-clay sediments, and facilitated ubiquitous early diagenetic carbonate cements characteristic of Wheeler mudrocks (Gaines et al., 2005). These cements occur as micron-sized pore filling cements and cone-incone cements around pre-existing carbonates, including trilobite carapaces or micritic horizons. Isotopic (δ^{13} C) and petrographic evidence indicates that cements were emplaced early in the diagnetic history and were derived from a detrital carbonate precursor (Gaines et al., 2005). This model proposes that preservation of nonmineralized tissues in the Wheeler Formation resulted from a combination of influences that reduced permeability and thus lowered oxidant flux, which in turn may have acted to restrict microbial decomposition of some nonmineralized tissues. The absence of coarse grains (>50 µm) and skeletonized microfossils provided very low original porosity. Near-bottom anoxia prevented sediment irrigation by restriction of bioturbation. Reducing conditions near the sediment-water interface also may have acted to deflocculate aggregations of clay minerals, resulting in low permeability face-to-face contacts (Moon and Hurst, 1984). Abundant early diagenetic poreoccluding carbonate cements are suggested to have contributed significantly to occlusion of remaining porosity, halting oxidant flux into

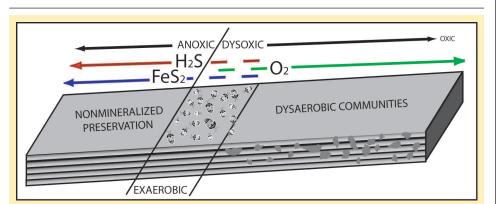


Figure 3. A. Schematic diagram illustrating the "exaerobic" concept of Savrda and Bottjer (1987). Movement of the anaerobic/dysaerobic boundary across the seafloor over time result in close interleaving of exaerobic beds with beds accumulated under anaerobic conditions, as well as under more oxic conditions, as shown in B, a 10-cm microstratigraphic log. (Triangles=cone-in-cone calcite; arrows=nonmineralized preservation; blue ovals = E. kingii nodules; "Squiggles"=burrows).

the sediments, restricting microbial decomposition and facilitating carbonaceous preservation of macrofossils. Fe-organic interactions (Petrovich, 2001) or clay-organic interactions (Butterfield, 1995) may have also operated at a molecular scale within the Wheeler sediments and thereby provided a favorable early burial environment at the micron scale and above.

TOWARDS A GLOBAL PICTURE: REMAINING CHALLENGES

In the Wheeler Formation, several regional and global factors were important in promoting the conditions described above, and thus, these factors may be relevant to the global distribution of Burgess Shale-type deposits. First, the depositional environment occurred offshore of a broad (~300 km) carbonate platform, which sequestered coarse siliciclastics inboard, and resulted in exclusively finegrained, mixed carbonate-siliciclastic sediments with low original porosities and the potential for early carbonate cementation. Relatively high sea levels and broad passive margins of the middle Cambrian (Brasier and Lindsay, 2001) were clearly an important factor, resulting in the migration of this distal depositional environment onto continental crust, where sediments have long-term preservation potential. Secondly, oxygen-limited bottom waters that lay just outboard of the platform margin were important in providing a close juxtaposition of anoxic and oxic benthic environments. The location of this boundary on the slope is also important as it promotes downslope transportation of organisms from the living environment to the (uninhabitable) preservational environment, and, in this case, it places the boundary over sediments favorable to preservation, described above. The incursion of oxygen-deficient water masses onto the slope at this time has been linked to restricted seaways, tropical conditions, and transgressive episodes (Landing, 2001). A third important aspect is the absence of skeletal microfossils from the locus of deposition. In the Holocene, skeletal micro-organisms are particularly abundant in shelf edge settings, and their abundance is positively correlated with both porosity and permeability of sediments (Kraemer et al., 2000), however, the oldest microfossil oozes do not occur until the late Cambrian (Tolmacheva et al., 2001), indicating a rise in abundance only at this time. While these conclusions are drawn from a single deposit, these aspects of the Wheeler Formation's primary depositional environment are the result of regional and global phenomena, and may be common to the Burgess Shale, as well as to other BST deposits.

Field-based and lab-intensive investigations of other BST deposits, conducted at an appropriate scale, may provide insight not available from studies of individual taxa alone. Further studies at this scale are needed. Additionally, the root causes of widespread oxygen deficiency in early and middle Cambrian slope environments warrant further investigation. Did these conditions result from periodically enhanced flux of organic matter to the seafloor, restricted circulation under climatic optima (Landing, 2001), low-lying continents at tropical latitudes, or some combination of these and other factors? Finally, the paleoecology of these most diverse Cambrian faunas deserves further study. These results suggest that discrete associations of fossils within apparently homogenous, fine-grained deposits may be resolved at a fine scale and linked to specific paleoenvironmental conditions. While results from the Wheeler Formation indicate that most nonmineralized faunas are transported assemblages of limited ecologic utility, these results provide framework criteria for their evaluation and suggest that associated assemblages of skeletonized fossils may provide significant opportunity for in situ paleoecologic study. As Burgess Shale-type deposits should be characterized by occurrence at or near the benthic redox (anoxic-dysoxic) boundary, they also present an environmental window in which to evaluate the possibility that the non-phototrophic, exaerobic lifestyle may have been widespread during the "Cambrian explosion."

ACKNOWLEDGMENTS

We thank M. Kennedy and N. Hughes, who were involved in discussions throughout the course of this work. Additionally, we thank S. Finnegan for assistance in the field, discussion, and comments on a previous draft of this manuscript. This work benefited considerably from helpful discussions with D. Briggs, N. Butterfield, S. Jensen, S. Peters, M. Prokopenko, C. Savrda, and J. Schieber, and field advice from T. Abbott and G. Gunther. Additional thanks to G.H. Johnson, J. Filer, and C. Kneale. This paper was reviewed by J.W. Hagadorn and one anonymous reviewer.

REFERENCES:

- Allison, P.A., and Briggs, D.E.G., 1993, Exceptional fossil record: Distribution of soft-tissue preservation through the Phanerozoic:
- Geology, v. 21, p. 527-530. Babcock, L.E., 2003, Trilobites in Paleozoic predator-prey systems, and their role in reorganization of early Paleozoic ecosystems, in Kelley, P.H., Kowalewski, M., and Hansen, T.A., eds., Predator-Prey Interactions in the Fossil Record, Kluwer Academic/Plenum Publishers, New York, p. 55-92.
- Babcock, L.E., Zhang, W., and Leslie, S.A., 2001, The Chengjiang Biota:

Record of the Early Cambrian diversification of life and clues to exceptional preservation of fossils: GSA Today, v. 11, p. 4-9.

- Brasier, M.D., and Lindsay, J.F., 2001, Did supercontinental amalgama-tion trigger the "Cambrian Explosion"?, in Zhuravlev, A.Y., and Riding, R., eds., The Ecology of the Cambrian Radiation, Columbia
- University Press, New York, p. 69-89. Briggs, D.E.G., and Kear, A. J., 1994, Decay and mineralization of shrimps: Palaios, v. 9, p. 431-456. Briggs, D.E.G., and Nedin, C., 1997, The taphonomy and affinities of
- the problematic fossil Myoscolex from the Lower Cambrian Emu Bay Shale of South Australia: Journal of Paleontology, v. 71, p. 22-32.
- Butterfield, N.J., 1995, Secular distribution of Burgess Shale-type preservation: Lethaia, v. 28, p. 1-13. Butterfield, N.J., 2003, Exceptional fossil preservation and the Cambrian
- explosion: Integrative & Comparative Biology, v. 43, 166-17 Conway Morris, S., 1986. The community structure of the Middle Cambrian phyllopod bed (Burgess Shale): Palaeontology, v. 29, p.
- 423-467. Conway Morris, S., 1989, The persistence of Burgess Shale-type faunas: implications for the evolution of deeper-water faunas: Transactions of
- the Royal Society of Edinburgh: Earth Sciences, v. 80, p. 271-283. Conway Morris, S., 1998, The Crucible of Creation: Oxford University Press, Oxford, 242 p.
- Droser, M.L., and Bottjer, D.J., 1988, Trends in depth and extent of bioturbation in Cambrian carbonate marine environments, western United States: Geology, v. 16, p. 233-236.
- Elrick, M., and Hinnov, L.A., 1996, Millennial-scale climate origins for stratification in Cambrian and Devonian deep-water rhythmites, western USA: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 123, p. 353-372.
- Fortey, R., 2000, Olenid trilobites: The oldest known chemoautotrophic symbionts?: Proceedings of the National Academy of Science, v. 97, p. 6574-6578
- Gaines, R.R., and Droser, M.L., 2003, Paleoecology of the familiar trilobite Elrathia kingii: an early exaerobic zone inhabitant: Geology, v. 31, p. 941-944.
- Gaines, R.R., Kennedy, M.I., and Droser, M.L., 2005, A new hypothesis for organic preservation of Burgess Shale taxa in the middle Cambrian Wheeler Formation, House Range, Utah: Palaeoclimatology,
- Palaeogeography, Palaeoecology, v. 218. Hagadorn, J.W., 2002, Burgess Shale-type localities: The global picture, in Bottjer, D.J., Etter, W., Hagadorn, J.W., and Tang, C.M., eds., Exceptional Fossil Preservation, Columbia University Press, New York, p. 91-116.
- Kraemer, L.M., Owen, R.M., and Dickens, G.R., 2000. Lithology of the upper gas hydrate zone, Blake Outer Ridge: a link between diatoms, porosity, and gas hydrate: Proceedings of the Ocean Drilling Program, Scientific Results, v. 164, p. 229-236. Landing, E., 2001, "Burgess Biotas" and episodic slope and epiric sea
- dysaerobia in the Late Precambrian-Paleozoic: Geological Society of
- America Abstracts with Programs, v. 33, p. 38. Moon, C.F., and Hurst, C.W., 1984, Fabric of mud and shales: an overview, in Stow, D.A.V., and Piper, D.J.W. (Eds.), Fine-grained
- Sediments, Geological Society Special Publication v. 15, p. 579-593. Orr, P.J., Briggs, D.E.G., and Kearns, S.L., 1998, Cambrian Burgess Shale animals replicated in clay minerals: Science, v. 281, p. 1173-1175.
- Petrovich, R., 2001, Mechanisms of fossilization of the soft-bodied and lightly armored faunas of the Burgess Shale and of some other classical localities: American Journal of Science, v. 3001, p. 683-726.
- Potter, P.E., Maynard, J.B., and Pryor, W.A., 1980, Sedimentology of Shale. Springer-Verlag, New York, 306 p.
- Powell, W., 2003, Greenschist-facies metamorphism of the Burgess Shale and its implications for models of fossil formation and preservation: Canadian Journal of Earth Sciences, v. 40, p. 13-25.
- Rees, M.N., 1986. A fault-controlled trough through a carbonate platform: the middle Cambrian House Range embayment: GSA Bulletin, v. 97, p. 1054-1069. Robison, R.A., 1964, Late Middle Cambrian faunas from western Utah:
- Journal of Paleontology, v. 38, p. 510-566.
- Robison, R.A., 1991, Middle Cambrian biotic diversity; examples from four Utah lagerstätten; in Simonetta, A.M., and Conway Morris, S., eds., The Early Evolution of the Metazoa and the Significance of
- Problematic Taxa, Cambridge University Press, Cambridge, p. 77-98. Savrda, C.E., and Bottjer, D.J., 1986, Trace-fossil model for reconstruction of paleo-oxygenation in bottom waters: Geology, v. 14, p. 306-309.
- Savrda, C.E., and Bottjer, D.J., 1987, The exaerobic zone, a new oxygen-
- deficient marine biofacies: Nature, v. 327, p. 54-56.
 Savrda, C.E., Bottjer, D.J., and Gorsline, D.S., 1984, Development of a comprehensive oxygen-deficient marine biofacies model: evidence from Santa Monica, San Pedro, and Santa Barbara Basins, California continental borderland: American Association of Petroleum Geologists Bulletin, v. 68, p. 1179-1192.
- Schieber, J., 2003, Simple gifts and buried treasures- Implications of finding bioturbation and erosion surfaces in black shales: The Sedimentary Record, v. 1, p. 4-8.
- Scilacher, A., 1997, The meaning of the Cambrian explosion: Bulletin of the National Museum of Natural Science, Taiwan, v. 10, p. 1-10. Tolmacheva, T.J., Danelian, T., and Popov, L.E., 2001, Evidence for 15
- m.y. of continuous deep-sea biogenic siliccous sedimentation in early Paleozoic oceans: Geology, v. 29, p. 755-758.
 Zhu, M.Y., Babcock, L.E., and Steiner, M., 2005, Fossilization modes in
- the Chengjiang Lagerstätte (Cambrian of China): testing the roles of organic preservation and diagenetic alteration in exceptional preservation: Palaeogeography, Palaeoclimatology, Palaeoecology, 218.
- Zhuravlev, A.Y., and Riding, R., eds., 2001, The Ecology of the Cambrian Radiation: Columbia University Press, New York, 525 p.

A YEAR IN REVIEW A Society Moving Forward

Now that I am completing my term as your President, I would like to take this last letter to bring you all up to date on the Society's progress over the past year. I think that SEPM has had a good year, and there is much positive to report. It has been a privilege and honor to serve as SEPM President, and I would like to thank all of you who have volunteered to help the Society. It has been gratifying to see how many of you have been willing to step up to serve. Headquarters is a committed group and they have done a great job this past year. Our strength, however, is in our member volunteers who give the Society a truly strong presence in the Sedimentary Community.

Financially, these are challenging times for all professional societies, and Headquarters and the HBC Committee, chaired by John Robinson, have teamed up to achieve a year in the black for SEPM. In the uncertain world of revenues and publishing, this is a significant achievement.

We, as a Society, have made significant strides in the last year on a number of ongoing efforts that past Councils and Headquarters have initiated. We have seen the successful launch of GSW (GeoScience World) in the first quarter of this year. Thirty geoscience journals have partnered to create a single resource for geoscience researchers. It should be coming to your local geoscience library or company soon. I am optimistic that that our participation in this publishing aggregate will give us a growing, and stable source of income. The aggregate approach to publication should allow significant savings for libraries, and ensure that SEPM journals remain in geoscience libraries. This has taken up a great deal of Howard's time over the last two years and he is to be commended on a job well done. As the internet continues to change the world around us, more changes are coming in the publishing world. Digital publishing is here to stay. Open access is, I predict, going to come faster than we think. Our journals are considering moving to an all-electronic venue. It is time now to express your views to your editors. This will be a topic of discussion at the next Council meeting in

Calgary, this June.

We have continued to strengthen our global community. The Sedimentary Record has received excellent feedback from members, and continues to grow into an effective venue for keeping you all informed and connected to SEPM. Our partnerships with AAPG and GSA have been strengthened. We had a stronger presence at GSA in Denver last fall, and I expect our participation will grow. The program for Calgary this year, in partnership with the CSPG, is shaping up to be an excellent one. In addition to strong technical sessions, I think we will have the strongest lineup of short courses and field trips that I have seen in some time. Don't forget to check the membership box when you register for Calgary, so that SEPM can get credit and receive funds from AAPG to help defer the meeting costs. Under the leadership of John Snedden and Brad Prather, next year's Annual Meeting in Houston looks strong as well. Highlights will include a core workshop on giant fields from around the world, and a short course workshop on Quaternary reefs and platforms – bridging the gap between the ancient and the modern. On the international front, SEPM has agreed to sponsor events at two upcoming meetings. We will be sponsoring student participants at the 8th International Conference on Fluvial Sedimentology, to be held in the Netherlands in August of this year. At the AAPG/PESA International Meeting in Perth in 2006, we will sponsor two technical sessions, an oral session on carbonate platforms and a poster session on coastal and shelf processes, a sequence stratigraphy short course for students, and possibly a field trip to the Great Barrier Reef. I see this as a start to bringing more value to our members around the world.

Lastly, I'd like to mention our Research Conferences. These are, of course, a vital element in our efforts to disseminate our science, and I am happy to report that we are in the midst of an excellent year. Due to the efforts of Howard, and Vitor Abreu and the Research Committee, we have been able to increase the number conferences, and the diversity of conference topics. Since last year's annual meeting in Dallas, SEPM has conducted three very successful research conferences, all of which will result in special publications. Conferences have included: (1) Recent Advances in Shoreline – Shelf Stratigraphy, organized by Gary Hampson, Ron Steel, Pete Burgess, and Bob Dalrymple; (2) Seismic Geomorphology, organized by Lesli Wood, Vicki Sare, Richard Davies, Joe Cartwright, and Henry Posamentier; and (3) Geologic Problem Solving with Microfossils, hosted and organized by NAMS, and led by Tom Demchuk, and Ron Waszczak. I was able to attend the Seismic Geomorphology Conference, and was impressed with the quality of oral presentations and posters, and the lively discussions among participants. The Seismic Geomorphology special publication will be published in partnership with the Geological Society of London, who co-sponsored the conference. Our next research conference will be held in May, in Springfield Missouri, on The Sedimentary Record of Meteorite Impacts. Future topics that have been approved or are in review include, 1) External Controls on Deep Water Deposition; 2) Ichnological Applications to Sedimentologic and Stratigraphic Problems; 3) Application of Earth System Modeling to Exploration; 4) Paleogeography, Paleoclimatology and GIS; 5) Sea Levels; and 6) Source2Sink – Mississippi River System (Quaternary). I want to thank all the organizers for their efforts this past year, and wish success to all our upcoming conveners. When you consider the list above, it is clear that we have a very diverse and healthy sedimentary community.

I encourage you all to stay involved, and if you haven't volunteered yet, please consider helping out. It has been fun for me, and I can highly recommend it. Once again, I want to thank you, the members, for allowing me to serve as your President. I am looking forward to staying involved with SEPM as your Past-President.

Rick Sarg, President SEPM ricksarg1@aol.com

COMMENTS FROM THE COUNCIL

First Joint SEPM/GSL Research Conference in Seismic Geomorphology is a Huge Success

The first joint SEPM Society for Sedimentary Geology & Geological Society of London (GSL) Research Conference in Seismic Geomorphology was held February 10 and 11 at the Westchase Hilton in Houston, Texas. Over one hundred and forty attendees enjoyed two days of key note speakers, technical talks and posters and networking lunches that brought together the industry, government and academic scientists who are exploring this new direction in sedimentary systems study. Dr. Henry Posamentier (Chief Geologist, Anadarko) kicked off the conference with a key note address reviewing the history and future of seismic geomorphology. His talk was well received by all, setting the tone of the conference as a move toward the future that is built upon the strong historic scientific directions of seismic stratigraphy, sequence stratigraphy and sedimentary geomorphology. Other key note speakers included Dr.

Frank Ethridge (Colorado State University, USA), Dr. John Anderson (Rice University, USA) and Dr Fridtjof Riis (Norwegian Petroleum Directorate). The sessions focused on deep marine, shallow marine and fluvial systems and carbonates. In addition, sessions with specific exploration and development case studies and new methods in seismic analysis and visualizations rounded out the two-day program. Participants commented that "the conference was superb. It was good to see that Seismic

Geomorphology has moved on from a collection of fancy pictures to some quantitative analysis." Several attendees observed that it was good to see this number of talks illustrating how seismic techniques/seismic geomorphology can actually be applied to "reallife" exploration and production issues. A publication from the conference is slated to contain at least 18 papers and be out by early 2006. It will be jointly produced by SEPM and GSL and be officially published as a GSL Special Publication.

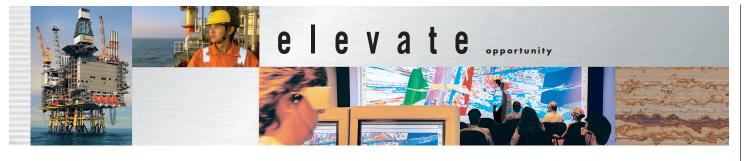
Conference co-conveners included Richard Davies and Joe Cartwright (Cardiff University), Lesli Wood (Bureau of Economic Geology, University of Texas at Austin), Henry Posamentier, and Vicki Sare (ChevronTexaco). The conference organizers SEPM and GSL would like to thank the conference sponsors, Paradigm Geophysics, BP, Anadarko Algeria Company LLC and the Quantitative Seismic Geomorphology Research Group at the University of Texas at Austin for their financial support of this important scientific collaborative effort by SEPM and GSL. We hope that these types of collaborations will continue in the future.

Lesli Wood, SEPM Sectretary-Treasurer lesli.wood@beg.utexas.edu

SEPM SOCIETY FOR SEDIMENTARY GEOLOGY 2005 NEW COUNCIL MEMBERS

PRESIDENT-ELECT: ROBERT DALRYMPLE, Queens University, Ontario, Canada SEDIMENTOLOGY COUNCILOR: RONALD STEEL, Univ. of Texas-Austin, Texas, USA PALEONTOLOGY COUNCILOR: STEVEN HOLLAND, Univ. of Georgia, Georgia, USA SPECIAL PUBLICATIONS CO-EDITORS: LAURA CROSSEY, Univ. of New Mexico, New Mexico, USA DONALD McNEILL, Univ. of Miami, Florida, USA

...and thanks to the outgoing council members for their service


Rick Sarg (Exxonmobil-retired) Maria Mutti (Univ. of Pottsdam) Stephen Leslie(Univ. of Arkansas, Little Rock)

....and welcome to potential volunteer members

SEPM is always in need of member volunteers for standing committees and ad hoc special assignments. If you are interested in helping SEPM in its activities please contact: Bill Morgan (SEPM President – <u>w.a.morgan@conocophillips.com</u>) or Howard Harper (Executive Director, <u>hharper@sepm.org</u>).

The Society for Organic Petrology (TSOP), 22nd Annual Meeting, September 11-14, 2005, Louisville, Kentucky USA. Information: Dr. James Hower, E-mail: <u>hower@caer.uky.edu</u> Further details: <u>http://igs.indiana.edu/tsop2005</u>

ConocoPhillips is seeking 3 geological specialists who will:

Support global teams through application of stratigraphic principles to address questions of reservoir architecture and continuity; guide industrial and academic research programs. Successful candidates need to quickly fit into multi-disciplinary teams, manage multiple projects, and influence business decisions as collaborative team players. Strong capability in integration of diverse geoscience data required. Some domestic/foreign travel required.

Siliciclastics Stratigrapher/Sedimentologist Houston Texas

- Focus: Fluvial, Lacustrine, Aeolian, Coastal, Shallow Marine Siliciclastics
- 0-15 years industry experience with MS/PhD degree in Clastic Sedimentology/Stratigraphy.
- Strong geoscience interpretation and workstation skills (core, well log, regional scale analysis, seismic interpretation)

Petrographer/ Petrologist Houston Texas

- Focus: Sedimentology, Diagenesis and Stratigraphy of Carbonate and Siliciclastic Rocks
- 0-15 years industry experience with MS/PhD in Sedimentology/Stratigraphy
- Knowledge of thin-section petrography, UV/cathodoluminescent microscopy, XRD, SEM, electron probe, fluid inclusion, stable isotope and trace element analysis. Familiarity with core description and diagenetic software modeling packages.

Attractive salary and full-scale benefits program. Agency need not apply. An equal opportunity employer. Submit resumes via: Open Positions on *http://www.conocophillips.com/careers*

Carbonate Stratigrapher/Sedimentologist Houston Texas Focus: Carbonates

and Diagenesis

- 0-15 years industry experience with MS/PhD in Carbonate Sedimentology/Stratigraphy
- Demonstrated competence in understanding carbonate deposition and diagenesis in a sequence stratigraphic context.

Upcoming GSL/SEPM Joint Research Conference

External controls on deep water depositional systems: climate, sea-level, and sediment flux.

Tentative dates: March 27-29, 2006, London, UK

Conveners: Ben Kneller (Aberdeen), Ole Martinsen (Norsk Hydro), Bill McCaffrey (Leeds) & Henry Posamentier (Anadarko Canada)

Deep marine clastic systems represent the planet's ultimate sediment sink. As such, they are susceptible to all the processes that govern sediment supply throughout the transport pathway, from uplift and erosion, through fluvial transport, shoreline transition, storage and remobilization, each affected by tectonics, climate and sea level. The deep marine system thus contains a record of these controls in its distribution of sediment types and depositional architectures, which is more complete than that provided by any other depositional environment. Moreover, it extends into the distant geological past, providing a record of climate change on time scales two orders of magnitude greater than that of the Pleistocene, and including records of a very different Earth from that of today.

The continuing importance of hydrocarbon reservoirs hosted by deep marine clastic systems also demands an understanding of the interplay of these external controls in generating suites of architectures that can be predicted in the subsurface. Also existing oil and gas fields provide a wealth of stratigraphic and contextual information from which these controls can be elucidated.

The aim of the meeting is to promote cross-fertilization between workers on modern, subsurface and outcrop systems, and to highlight the application of concepts from climatology, the study of Quaternary variations in sediment flux and type in rivers and on shelves etc, by having keynote speakers from these 'outside' disciplines. There will also be invited speakers from within the discipline and a host of submitted topical presentations. Go to <u>www.sepm.org</u> or <u>www.geolsoc.org.uk</u> for additional information.

(Please check at The Westin for specific room assignments – there is limited shuttle service to and from The Westin and Stampede Park as well as train service)

Sunday, June 19: SEPM Council Meeting – 8:00 am – 5:00 pm-The Westin Calgary
Sunday, June 19: SEPM Research Group – Hydro & Enviro Geology – 2:00 pm – 4:00 pm – Lake Louise Room
Sunday, June 19: SEPM Research Group – Clastic Diagenesis – 2:00 pm – 4:00 pm – Rideau Room
Sunday, June 19: SEPM Booth Ice Breaker – 5:00 pm – 7:30 pm – Stampede Park

Monday, June 20: SEPM Student Reception – 6:00 pm – 7:00 pm – The Westin Calgary Monday, June 20: SEPM Research Group – Chronos/MMRG - 7:00 pm – 10:00 pm – To Be Announced Monday, June 20: SEPM Research Group – Carbonate Research – 7:00 pm – 10:00 pm – Mayfair Room Monday, June 20: SEPM Research Group – Paleosals – 7:00 pm – 10:00 pm – Lake Louise Room Monday, June 20: SEPM Research Group – Sequence Stratigraphy – 7:00 pm – 10:00 pm – Lakeview Room Monday, June 20: SEPM Research Group – Deep Water – 7:00 pm – 10:00 pm – Banff Room

Tuesday, June 21: SEPM Lunch with Dr. John Grotzinger (ticket required) – 11:30 am – 1:30 pm – The Westin Calgary Tuesday, June 21: SEPM Foundation Reception (by invitation) – 6:00 pm – 7:00 pm – The Westin Calgary Tuesday, June 21: SEPM President's Awards Reception – 7:00 pm – 8:30 pm – The Westin Calgary

Please stop by the SEPM Booth #1509 at Stampede Park !

A SPECIAL THANKS TO THE CALGARY SEPM ANNUAL MEETING COMMITTEE

Brian Zaitlin -SEPM Vice Chair Bob Dalrymple-SEPM Co-Vice Chair Brian Jones-SEPM Oral Session Co-Chair Guy Plint- SEPM Oral Session Co-Chair James MacEachern-SEPM Poster Session Chair Cindy Riediger-SEPM Short Course Chair Dave Eberth-SEPM Field Trip Chair Jeff Lukasik-SEPM Core Display Chair Bruce Schulz-SEPM Sponsorship Chair *A NEW SEPM SPONSORSHIP RECORD!*

The committee would like to give there thanks to their colleagues on the AAPG Annual Meeting Committee and especially to Sarah Venance (CSPG Assistant Convention Manager), who has been a source of constant help.

THANKS TO ALL OF THE SEPM ANNUAL MEETING SPONSORS

A & R Resources, LLC ΒP **Burlington Resources** Chemostrat ConocoPhillips Duvernay Oil Corp. ExxonMobil/Imperial Oil Resources Genesis Executive Corporation Huron Energy Corporation Midnight Oil Exploration - Daylight Energy Trust Petroleum Place Energy Priority Oil & Gas LLC Rakhit Petroleum Consulting Ltd. Real Resources Inc. Suncor Energy Inc. Zargon Oil & Gas Ltd